10

10

Time: 2 Hrs.30 Mins. Marks: 75

N.B. (i) All questions are compulsory.

- (ii) Attempt ANY TWO-sub questions out of Q1, Q2 and Q3.
- (iii) Attempt ANY THREE-sub questions from Q4.
- (iv) Figures to the right indicate marks.
- Q.1. (a) Show that for any two events A and B, $P(A \cup B) = P(A) + P(B) P(A \cap B).$

Also derive the result when A and B are mutually exclusive events.

- (b) A committee of 3 is to be formed from among 5 boys and 3 girls. What is the probability that the committee shall have
 - i) 2 boys and 1 girl
 - ii) at least one boy
 - iii) more girls than number of boys.
- (c) Two cards are drawn from a normal pack of 52 well-shuffled cards. Find the 10 probability that the cards drawn are
 - i) both black
 - ii) one black and one heart
 - iii) both aces
 - iv) one ace and one king
 - v) both face cards
- (d) In a bolt factory, three machines A, B and C produce 25, 35 and 40 percent of total output respectively and it is found that 5, 4 and 2 percent respectively are defective bolts in their production. If a bolt is chosen at random from the total output, what is the probability that it is defective? If a bolt is chosen and is found to be defective, what is the probability that the bolt came from machine A?
- Q.2. (a) Define Expectation E(X) and Variance V(X) of a discrete random variable 10 X. Show that
 - i) E(aX + b) = a E(X) + b
 - ii) $V(aX + b) = a^2 V(X)$, where a and b are constants.
 - (b) Find K in the following case so that p(x) can be regarded as a probability distribution function.

X :	-1	0	1	2
P(X) :	<u>k+1</u>	1 13	k	$\frac{k-4}{13}$
$\Gamma(\Lambda)$.	13	13	13	13

Also find Expected value of X.

(c) Following is joint probability mass function of X and Y.

	•		
x\y	1	2	3
5		0.05	0,10
10	0.15	0.20	0.20
15	0,10	0,05	0.05
20			0.10

Obtain- i) Marginal probability distributions of X and Y

- ii) Conditional probability distribution of Y when $X \ge 3$.
- iii) Conditional probability distribution of X when $Y \le 2$

	(d)	Explain joint probability distribution of two discrete random variables. Define (i) joint probability mass function (ii) marginal probability mass function (iii) conditional probability mass function.	10
Q.3.	(a)	Define a random variable X that follows discrete uniform distribution with parameter n. Also find its mean and variance.	10
	(b)	The sales manager of an automobile dealer estimates that 90% of the new cars delivered by them have no defect and so will not be brought back immediately for repair. He sells a fleet of 6 cars to an important customer. What is the probability that — (i) no car will be brought back	10
		(ii) all cars will be brought back	
		(iii) one or more cars will be brought back for repair?	
	(c)	A variate X follows Poisson distribution with parameter 5. Evaluate (i) $p(x = 0)$ (ii) $p(x = 1)$ (iii) $p(x \ge 1)$ (iv) $p(x \ne 0)$. Given that $e^{-5} = 0.00674$.	10
	(d)	A digit is drawn at random from among the digits $1, 2, 3, 4, 5, 6, 7, 8, 9$ and 0 . If X denotes the digit drawn, find $p(x)$, $E(X)$ and $V(X)$.	10
Q.4.	(a)	Tickets numbered from 1 to 100 are well shuffled and a ticket is drawn from it. What is the probability that the selected ticket has: (i) an odd number (ii) number 5 or multiple of 5?	5
	(b)	A discrete random variable X takes values -2, 0 and 2 with probabilities 0.2,	5
W.		0.5 and 0.3 respectively. Find the probability distribution function of - (i) $Y = 2X + 1$ (ii) $Z = X^2 + 1$	
	(c)	A Binomial distribution has mean 6 and variance 3. Find n and p.	5
	(d)	On an average three divorce cases are filed in a court of a small city. Find the chance that on a certain day the number of such cases coming up would be (i) one	5
		(ii) at least two	
		(iii) at most two	
		1-11/00 to 2-11/1/1/1/1	